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Testing
Testing Environment
● EC2 Amazon Web Service instance 
● Jupyter Notebooks 
● Anaconda 

Regression Testing
● Manual and informal
● Isolated components and tested with custom inputs
● Ran against multiple inputs to ensure correct output 

Integration Testing 
● Use Pipeline to test integration of components
● Ensure subclasses could be used interchangeably 
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Asset Management - Financial Factor Discovery - “Value”

Motivation

● Investment analysis at Principal Financial Group currently relies on human calculation, using a variety of 
models and inputs

● Various steps of the statistical analysis process can be automated, which would remove most of the 
potential for human error, and reduce overhead costs by making accurate statistical modeling and 
prediction more accessible

● Our solution makes use of our extensive background in computational sciences to implement a software 
approach to multi-factor statistical analysis and risk assessment

● We have developed a Pipeline to combine and streamline our research with data aggregation methods, 
feature selection techniques, and machine learning models

Design Requirements

Non-functional 
● All code will be developed in Python

○ As the most common language used for machine learning purposes, this was an 
easy decision for the language to use.

● Utilize machine learning techniques to generate predictions from stock data 
○ This is a common strategy for obtaining predictions of stock market factor 

performance 

Functional
● Models report processing time and accuracy
● Results are displayed in a human-readable format
● Models only use data from a certain time period to predict future behavior

○ Example: The model does not use stock market data from 2005 to make 
predictions on the stock market for 2002

● Summary of models gives concrete statistics for performance of each individual 
model, along with a comparison of each and a recommendation for which to use in 
similar future tasks.

Operating Environment

● Python version 3.6+,  Scikit-learn, Pandas, and Numpy. 
● Amazon Web Services: EC2 Instance for distributed computations hosted in the cloud

Technical Details
 

Languages/Libraries
● Python 3.6
● Anaconda
● Scikit-learn, Numpy, Pandas

Development Tools/Environments
● Jupyter Notebooks
● Amazon AWS 
● Pycharm IDE
● PostgreSQL Database EngineOur model block diagram describes the 

workflow taken from initial data collection 
to final prediction results

Pipeline: A controller which provides an interface 
for easy interaction with all components in the 
prediction pipeline sequence. The pipeline 
manages communication inputs and outputs 
between components.

Predictive Model: Used to generate predictions 
for a specified factor. A subclass would utilize 
a machine learning model from either 
Scikit-learn or from a custom implementation 
to predict one value, using the input data.

Feature Selector: Used to implement one of 
the feature selection techniques developed. 
Recursive Feature Elimination, Tree Based, and 
PCA all provide a unique subset of features to 
be fed into a model. 

PipelineResult: Used to store the results from 
the predictive model. Additionally contains 
functionality to analyze and display 
information about the results obtained in a 
human-readable format.

Aggregator: Encapsulates the functionality for 
aggregating predictor and feature columns. Each 
subclass contains their own method to aggregate a 
specific predictor. The parent abstract class 
implements the basic feature aggregation.

Pipeline Components 

Prediction Path: This class defines the process in 
which the Predictive Model instance will be 
tested. The instantiation defines input data sizes 
for each window. The model is then tested in the 
each window. Results are then returned.

Top Left: Gradient boosting model with loss calculation of least absolute deviation with learning rate 0.001.
Top Right:  Gradient boosting model with loss calculation of least squares and a learning rate of 0.01
Bottom Left: Random forest model with number of estimators set to 100 
Bottom Right: Extra trees model with number of estimators set to 100

PIPELINE CLASS DIAGRAM

Constraints
● Use only past data to predict future performance
● Utilize only first decile of stock-level data 
● Develop entire project on client’s EC2 instance


