
Department of Electrical and Computer Engineering
ECpE Senior Design Poster Session

December 6, 2018
sddec18-13

Testing
Testing Environment
● EC2 Amazon Web Service instance
● Jupyter Notebooks
● Anaconda

Regression Testing
● Manual and informal
● Isolated components and tested with custom inputs
● Ran against multiple inputs to ensure correct output

Integration Testing
● Use Pipeline to test integration of components
● Ensure subclasses could be used interchangeably

Caleb Utesch, Carter Scheve, Jack Murphy, Alex Mortimer, Nathan Hanson, and Samuel Howard with Dr. Chinmay Hegde

Acknowledgements: Dr. Joseph Zambreno, Dr. Thomas Daniels

Asset Management - Financial Factor Discovery - “Value”

Motivation

● Investment analysis at Principal Financial Group currently relies on human calculation, using a variety of
models and inputs

● Various steps of the statistical analysis process can be automated, which would remove most of the
potential for human error, and reduce overhead costs by making accurate statistical modeling and
prediction more accessible

● Our solution makes use of our extensive background in computational sciences to implement a software
approach to multi-factor statistical analysis and risk assessment

● We have developed a Pipeline to combine and streamline our research with data aggregation methods,
feature selection techniques, and machine learning models

Design Requirements

Non-functional
● All code will be developed in Python

○ As the most common language used for machine learning purposes, this was an
easy decision for the language to use.

● Utilize machine learning techniques to generate predictions from stock data
○ This is a common strategy for obtaining predictions of stock market factor

performance

Functional
● Models report processing time and accuracy
● Results are displayed in a human-readable format
● Models only use data from a certain time period to predict future behavior

○ Example: The model does not use stock market data from 2005 to make
predictions on the stock market for 2002

● Summary of models gives concrete statistics for performance of each individual
model, along with a comparison of each and a recommendation for which to use in
similar future tasks.

Operating Environment

● Python version 3.6+, Scikit-learn, Pandas, and Numpy.
● Amazon Web Services: EC2 Instance for distributed computations hosted in the cloud

Technical Details

Languages/Libraries
● Python 3.6
● Anaconda
● Scikit-learn, Numpy, Pandas

Development Tools/Environments
● Jupyter Notebooks
● Amazon AWS
● Pycharm IDE
● PostgreSQL Database EngineOur model block diagram describes the

workflow taken from initial data collection
to final prediction results

Pipeline: A controller which provides an interface
for easy interaction with all components in the
prediction pipeline sequence. The pipeline
manages communication inputs and outputs
between components.

Predictive Model: Used to generate predictions
for a specified factor. A subclass would utilize
a machine learning model from either
Scikit-learn or from a custom implementation
to predict one value, using the input data.

Feature Selector: Used to implement one of
the feature selection techniques developed.
Recursive Feature Elimination, Tree Based, and
PCA all provide a unique subset of features to
be fed into a model.

PipelineResult: Used to store the results from
the predictive model. Additionally contains
functionality to analyze and display
information about the results obtained in a
human-readable format.

Aggregator: Encapsulates the functionality for
aggregating predictor and feature columns. Each
subclass contains their own method to aggregate a
specific predictor. The parent abstract class
implements the basic feature aggregation.

Pipeline Components

Prediction Path: This class defines the process in
which the Predictive Model instance will be
tested. The instantiation defines input data sizes
for each window. The model is then tested in the
each window. Results are then returned.

Top Left: Gradient boosting model with loss calculation of least absolute deviation with learning rate 0.001.
Top Right: Gradient boosting model with loss calculation of least squares and a learning rate of 0.01
Bottom Left: Random forest model with number of estimators set to 100
Bottom Right: Extra trees model with number of estimators set to 100

PIPELINE CLASS DIAGRAM

Constraints
● Use only past data to predict future performance
● Utilize only first decile of stock-level data
● Develop entire project on client’s EC2 instance

