

## Factor Prediction: Forecasting Risk

Final Presentation Date 12/6/2018 Iowa State University Senior Design - sddec18-13



#### Meet the Team



Nathan Hanson



Jack Murphy



**Carter Scheve** 



Caleb Utesch



Samuel Howard



Alex Mortimer











### Motivation

 $\mathbf{\vee}$ 

Why is this project important?

#### **Current Techniques**

## Current methods focus on expected return rather than variance or volatility

Quantifying risk is crucial for informed decision making

Solution

 $\mathbf{\nabla}$ 

Aggregate stock-level data into feature-level data

Utilize Machine Learning and Statistical Modeling

Create software tool for making investment predictions

#### **Advantages**

Give portfolio managers better information for their portfolios

Tool can eliminate erroneous human decisions

Increase decision-making speed for volatile market



#### Goal: Forecasting two measures of factor risk

Accurate forecasts of cross-sectional return variance and time-series return volatility would enable better factor selection and support portfolio allocation decisions.



**Cross-Sectional Return Variance** 



Time-Series Return Volatility



#### Goal: Forecasting two measures of factor risk



**Cross-sectional Return Variance** 

A measure of risk that describes the spread of **stock returns** within the factor portfolio over a specified horizon.

Example: Variance of future 6-month returns for the 100 stocks in top decile of Book-to-Price at one cross section of time.

How risky is it to pick a sample from this group?

What if the wrong stocks are selected?



#### Goal: Forecasting two measures of factor risk

Another measure of risk that quantifies the spread of **portfolio returns** over a future horizon.

Example: Standard deviation of weekly returns of the top decile of Book-to-Price over the future 6-month horizon.

Is this factor likely to generate extreme returns?

Can I tolerate this outcome's uncertainty?



#### **Time-Series Return Volatility**



#### Weekly Risk Visualization



- Left: Cross-sectional variance
- Right: Volatility
- Initial EDA helped to understand the data we are trying to regress
- Transforming the data to a log scale helps













#### **Project Scope**

The goal of this project is to explore novel methods for analyzing and predicting certain factors of stocks. We have researched several feature analysis and machine learning techniques to use to generate predictions of future market performance. Once successful, this process could improve investment decisions and reduce the amount of time needed from analysts to manage a portfolio.

Research on machine learning and data analysis techniques Organize data as required for models; Create several different types of models to identify prospects

Tune model parameters and apply feature analysis to improve results

Test effectiveness of models and analysis methods through a historical portfolio analysis



#### **Project Flow**





## **Market Survey**

- <u>Predicting the direction of stock market prices using Random Forest</u>
  - Paper published in 2016
  - In-depth discussion of the mechanics of Random Forest
  - Displayed very high accuracy for short term classification results
- Prediction Algorithms and Confidence Measures Based on Algorithmic Randomness Theory
  - Paper published in 2002
  - Introduction to confidence measures in classification models
  - Achieved about 99% accuracy in classifying handwritten digits using SVM with confidence measures.
- Principal Component Analysis
  - Paper created in 2017
  - Demonstrates the usefulness and potential for PCA
  - Shows Cross Validation techniques to improve models







|   | Data<br>Aggregation                                                             |                                                                                            | Feature<br>Analysis                                                 |   | Machine<br>Learning<br>Models                                                                         |   | Portfolio<br>Predictions                                                                      |
|---|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---|-------------------------------------------------------------------------------------------------------|---|-----------------------------------------------------------------------------------------------|
| • | Stock-level to<br>Feature-level                                                 | •                                                                                          | Reduce total number of features for model input                     | • | Use aggregated data as<br>training/testing data                                                       | • | Take latest market<br>data and provide<br>predictions for future<br>performance               |
| • | Split data into sorted                                                          | •                                                                                          | Create new data from<br>feature reduction                           | • | Experiment with<br>regression machine<br>learning models                                              |   |                                                                                               |
|   | deciles                                                                         |                                                                                            |                                                                     |   |                                                                                                       | • | Use predictions to                                                                            |
| • | Aggregate decile                                                                |                                                                                            |                                                                     | • | Continue improving                                                                                    |   | maintain a test portiono                                                                      |
|   | feature data using<br>mean, median,<br>standard deviation and                   | •                                                                                          | Select features that<br>have the most effect<br>and less dependence |   | models that work well                                                                                 | • | Organize results into a<br>working pipeline that<br>encapsulates the<br>stages of our process |
|   |                                                                                 |                                                                                            |                                                                     | • | <ul> <li>Replace poor performing<br/>or ill-suited models with<br/>new experimental models</li> </ul> |   |                                                                                               |
|   | Create prediction<br>features (e.g. Vol, CSV)<br>from algorithmic<br>definition | <ul> <li>Learn more about how<br/>each feature<br/>contributes to the<br/>model</li> </ul> | Learn more about how                                                |   |                                                                                                       |   |                                                                                               |
| • |                                                                                 |                                                                                            |                                                                     |   |                                                                                                       |   |                                                                                               |







Motivation

- What
  - Python implementation of modeling process
  - Specifications for each step
  - Provides framework for automating modeling process
- Why
  - Facilitate continuation of our exploratory research
  - Organize process into well-defined modules
  - Provide prototype of modeling automation



Requirements

- Functional Requirements:
  - Must run each step of the prediction pipeline in order without additional user input between steps
  - Must provide a detailed result that includes details of the pipeline execution and results of the model-fitting.
- Non-Functional Requirements:
  - Components must be general enough that new components may be created and used easily
  - Must be able to provide results in a reasonably short length of time
  - Must include documentation for easier extensibility
- Constraints:
  - Implemented in Python and/or R
  - Use NumPy and Pandas for implementation



**Class Diagram** 





Design and Implementation

- Library Components:
  - Pipeline
  - Pipeline Component
  - Aggregator
  - Feature Selector
  - Predictive Model
  - Prediction Path
  - Result





#### Prediction Pipeline Historical Analysis



Variance of Future 6 Month Returns WRT Book-to-Price S 12 - Actual - Predicted ÷ 11 10 No Mo U S Ire log(Variance of Feb-1995 Feb-2016 AU9-2996 ceb-2998 AU9-2999 ceb-2001 AU9-2002 ceb-2004 AU9-2005 aug-2014 Feb-200. 5 ceb 2010 wg 2011 ceb 2013

Gradient boosting model with loss calculation of least absolute deviation with learning rate 0.001.

Random forest model with number of estimators set to 100.



### Challenges

| Problem                                                                                                                                    | Mitigation Strategy                                                                                                                               |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Initial Infrastructure Issues<br>Memory issues for concurrent users                                                                        | <ul> <li>Use swap space as supplementary memory to increase maximum<br/>synchronous usage</li> </ul>                                              |  |  |  |
| <b>Domain Research vs. Working Towards Deliverables</b><br>Lacking domain knowledge, but making good progress and results                  | <ul> <li>Deliverables have taken precedence over research</li> <li>Find subject matter experts to assist our learning</li> </ul>                  |  |  |  |
| <b>Accurate Feature Selection and Elimination</b><br>Needed to reduce the amount of features to get realistic and<br>interpretable results | • Feature selection phase integrated into workflow                                                                                                |  |  |  |
| <b>Ensure Models are Developed Correctly</b><br>Ensure that we miss as little as possible to make a realistic and<br>accurate model        | <ul> <li>Ask the Principal team questions on the dataset and output from models</li> <li>Look at output statistics other than accuracy</li> </ul> |  |  |  |



# Models & Algorithms Feature Analysis/Selection

| Feature Analysis Method       | Effect                                                                                                                                                                     |  |  |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Recursive Feature Elimination | Performs a greedy search to find the best performing feature subset. Iteratively creates models and determines the best or the worst performing feature at each iteration. |  |  |
| Principal Component Analysis  | Creation of new axes based on eigenvalues to explain the most amount of variance with the least amount of features. Primarily a dimensionality reduction technique.        |  |  |
| Tree-based Feature Selection  | Tree-based estimators are used to compute feature importances, which in turn are used to discard irrelevant features                                                       |  |  |



#### Models & Algorithms Machine Learning

| Predictive Model         | How it Works                                                                                                                                                                                                               | Advantages                                                                                                                                          |  |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Random Forest Regression | Creates a "forest" of decision trees<br>Evaluates a decision based on splits between trees<br>Analyzes results from several decisions to produce prediction                                                                | Classification or Regression<br>Simple and flexible<br>Easier to understand<br>Quick to develop working<br>models<br>Quick to see out-of-box scores |  |
| Support Vector Machine   | Supervised learning classification technique which aims to create decision boundaries by maximizing distance between a hyperplane and each of the classes.                                                                 | Model non-linear decision<br>boundaries<br>Effective in high-dimensional<br>datasets                                                                |  |
| Auto-Regressive          | Use previous outcomes in a time series to predict future outcomes                                                                                                                                                          | Useful for cyclic data or highly autocorrelated data                                                                                                |  |
| Gradient Boosted Trees   | Takes in a regressor and builds an additive model. This model is then tested against a loss function. The regressor is then fit on the output and direction of the loss function to optimize the learning of the regressor | Utilizes an extra factor to help it learn with optimization of the model                                                                            |  |







### **Project Conclusion**

#### **Project Highlights**

- Learned about and successfully applied machine learning models within the financial domain
- Created a prototype forecasting application (Pipeline) with high extensibility using Python
- Provided new insights and useful results to our client that will provide value to the company

#### **Project Future**

- All code will be transferred over to Principal Financial Group for future usage
- May be developed further into a fully fleshed out application for portfolio analysts to use regularly
- Our work will lay the groundwork for future stock analysis techniques within the organization



## Thank You!

## Questions?

