

Table of Contents
Table of Contents

List of Figures

List of Definitions 4

1 Project Design 5

2 Implementation Details 7

2.1 Prediction Pipeline 7

2.1.1 Pipeline 8

2.1.2 Pipeline Component 8

2.1.3 Aggregator 8

2.1.4 Feature Selector 8

2.1.5 Predictive Model 8

2.1.6 Prediction Path 8

2.1.7 Pipeline Result 8

3 Testing Procedure and Results 10

3.1 Testing Environment 10

3.2 Regression Testing 10

3.2 Integration Testing 10

3.3 Feature Selection Results 11

3.4 Historical Analysis 11

4 Related Products and Literature 11

5 Appendices 12

Appendix I. Operations Manual 12

Appendix II. Alternative/Unused Versions of Design 13

Appendix III. Miscellaneous/Other Considerations 14

List of Figures
Figure 1 (section 3.1, pg. 11): Project Timeline

List of Definitions
PGI: Principal Global Investors

BK_P: Book to Price - used to help demonstrate value

X12M_Ret: Investment’s Twelve-Month Return - used to demonstrate momentum

Predictor: The property or value being predicted

Feature: a descriptive property or value of an object, not the predictor

1 Project Design
Investment analysis at Principal Financial Group currently relies on human calculation,
using a variety of models and inputs. These statistical models are proven and effective,
although the dependence upon human-given inputs and calculations is both inefficient
and unreliable. Various steps of the statistical analysis process can be automated through
software. This would remove most of the potential for human error, expedite the decision
making process, and reduce overhead costs by making accurate statistical modeling and
prediction more accessible.

Our solution makes use of our background in computational sciences to implement a
software approach to multi-factor statistical analysis. We created a system which aids in
the creation and management of an investment portfolio based upon well-defined
statistical models and machine learning algorithms, which consistently outperforms the
market. Such a system not only increase profits for portfolio owners, but it would also
reduce risk by eliminating erroneous human action and increasing decision-making speed
in a volatile stock market.

Our final software solution consists of a pipeline meant for easy integration and
extensibility. When fed stock level data indexed on date, the data is first preprocessed

and aggregated to ensure smooth integration with later features. The data then undergoes
feature selection, which selects and modifies features about the data to better enable
prediction. A predictive model then takes this data, and attempts to predict some feature
about the data. A prediction path handles the specifics on which data is used to teach the
predictive models, and which the model should test on. The results are then collected and
analyzed to advise investment decisions. All components are encapsulated in interfaces
enabling future developers to modularly implement new versions of each component.

2 Implementation Details

2.1 PREDICTION PIPELINE

The prediction pipeline is essentially implemented as an ordered list of pipeline
components. It holds references to different concrete implementations of pipeline
components and manages input and output data from each, passing data along the chain
in order.

2.1.1 PIPELINE

The Pipeline class is an abstract class to represent the pipeline and flow of our final
deliverable. Key components to this class include the predictive model, data aggregator,
feature selector, and prediction path. The final Pipeline Result is collected through the
pipeline.

2.1.2 PIPELINE COMPONENT

The Pipeline Component is our highest level superclass, from which several of the
following classes inherit logic. It encapsulates the fundamental idea of the Pipeline,
requiring that each component within has a simple ​run() ​method, taking no arguments,
which performs the task of that component. This makes it simple to abstract the logic out
of the Pipeline class and simply specify which concrete class should perform each task.

2.1.3 AGGREGATOR

The aggregator class is responsible for taking in the stock level data indexed by date, and
returning factor level features of a certain decile organized by date with respect to a given
factor. Additionally, this class handles any computations necessary to produce the
predictor.

2.1.4 FEATURE SELECTOR

The feature selector is the abstract component for the implementation of the various
feature selection techniques the team developed throughout the year. It is used to
preprocess the data set and format a subset of selected features for machine learning
models to work with.

2.1.5 PREDICTIVE MODEL

The Predictive Model superclass subsumes much of the logic involved with a machine
learning model, and also allows for simple subclassing by other classes. This handles the
logic of setting the testing and training data for models, as well as limiting the available
packages to use to a subset of scikit-learn libraries commonly utilized in machine
learning applications.

2.1.6 PREDICTION PATH

The prediction path class is responsible for the main control flow of the prediction
process. It controls which weeks are used to train the model, which weeks to test, how
those weeks are selected, and how often feature selection is used.

2.1.7 PIPELINE RESULT

The result class holds the prediction results and the actual values. It also contains
functionality to perform statistical and graphical analysis of the data provided, with an
emphasis on human-readable formats and results.

2.2 EXECUTION SEQUENCE

Sequence Diagram: Describes a general use case with the sequence of pipeline
components. PipelineResult is formatted and returned.

3 Testing Procedure and Results
Testing is an important part of any software. This makes sure that the software delivered
fulfills requirements and works with uses cases described in a proposal. Our software is
an outlier in this fact. Testing is still important, but a standardized environment and
processes was not compatible with our software as much as we would’ve liked. Some of
our project dealt with data research, analysis, and modeling. This was more of a science,
where documentation and findings was the requirement and not so much the code or end
software. The pipeline for our project was a more formal software deliverable and testing
was more feasible.

Because of the aforementioned status and nature of our project, we decided that our
testing was going to be informal, but still achieve a set of goals. We didn’t have enough
time to implement a more formal testing process. This is because of our expertise in this
area and our deliverables taking priority, which testing and testing results were not a part
of. The first goal we wanted to accomplish was to make sure pipeline components work in
an isolated situation. This being that they can take the specified inputs and give back
outputs according to our pipeline standards. The second being to make sure all pipeline
components work within the standardized pipeline (i.e. integration in the pipeline).

3.1 TESTING ENVIRONMENT

Our testing environment, since it was an informal process, used the same environment as
our development. This being our AWS EC2 instance loaned to us by our client. Hosted on
that instance, we used Jupyter notebooks with python to run our testing process.

3.2 REGRESSION TESTING

Regression testing, in our project, was used to a certain extent to achieve the first goal
stated in this section: make sure pipeline components work in an isolated situation. Since
our process was informal, this part of testing was fully defined as regression testing, but
the implementation of our process was within that process of testing. Our specific
implementation of this process was as follows. First, we created a python environment
(main script) and setup imports that we would need to run all of the components. From
there, we standardized data to input into these components. Then, for each component,
one at a time, we as many different viable use cases of data input and parameters into the
component. We then analyzed the output data and tested it against expected output to
see any discrepancies and errors. If there was errors, the process was to fix these errors
iteratively (i.e. test, then fix, test, fix, etc.)

3.2 INTEGRATION TESTING

Our integration testing was used to achieve our second goal: make sure all pipeline
components work within the standardized pipeline. We only used integration testing in
this manner. The software environment was very similar to our regression testing process.
We setup a main method with standardized data input ready and all necessary imports.
The specific process was to setup an example pipeline. This followed our informal use
case and standardized pipeline setup. From there, the same iterative process of testing
and fixing would occur. Once a stable pipeline was in place, each concrete component,
one at a time, would be replaced with a new one. From there, the same iterative process
would be used to fix any errors and test integration. This was done until all components
were tested and their integration success was verified.

3.3 PROCESS DOCUMENTATION

Throughout the project, documentation has been generated about our progress and our
overall design process. There was an emphasis on this to accompany our technical work
as this is a deliverable to our client. This documentation has taken the form of weekly
updates for our client. This was decided on as the best way to go about this as we were
also able to get feedback and change our process or direction if need be. Our client has an
account on Dropbox and we uploaded our weekly presentation, findings, and code to the
specified folders for our client.

3.4 HISTORICAL ANALYSIS

Our historical analysis was brief, but useful preliminary knowledge about how our
modeled factors perform over time. We wanted to test the models on one factor, with one
predictor, to have control in our process. This also gave us more interpretable results
when differentiating between the success of different models. There are graphs shown
below, demonstrating our models historical performance. All of the graphs shown have
the same inputs. The factor level feature data has not been altered with feature selection
or anything else. The predictor, in blue, is the 6 month cross-sectional variance of decile 1
scaled through a log function.

Gradient boosting model with loss calculation of least absolute deviation with a learning rate 0.001.

Gradient boosting model with loss calculation of least squares and a learning rate of 0.01

Random forest model with number of estimators set to 100

Extra trees model with number of estimators set to 100

4 Related Products and Literature
Investment analysis is a task that has been taken on by many intelligent minds over the
course of time. Every investor that has worked in the stock market has tried to find the
pattern of growth and success to gain an advantage in future deals. From what we have
learned from research on the topic, other companies in the industry have software
systems to help predict the behavior of stocks (Robert) but, like Principal, still rely on
human analysis for their larger-scale decisions. Our product is different from projects like
these in the sense that ours analyzes the success and overall performance of individual
factors of investments, instead of an entire investment’s overall success. In addition to the
individual models, we will deliver analyses for each model, describing its effectiveness in
the market along with its advantages and shortcomings. Much of the knowledge we have
gained has been through tutorial websites, such as kaggle.com (Sehgal) or datacamp.com.
These have been effective in enhancing our comprehension of machine learning because
they allow for practice with realistic problems. This research enabled us to eliminate
certain machine learning models that proved to not be feasible for our project.

Our research has resulted in a more targeted approach to data analysis. For example, we
chose to implement a custom train-test split method, including a buffer between the end
of the data used for algorithm training and the beginning of the data used for testing the
trained algorithm. Through research and advice from our client, it was clear the
continuous chronological nature of the data would have a significant effect on the
accuracy of the trained algorithm. Our research did not include any domains pertaining
to finance, stocks, investments, or other related fields. This was for two reasons; the main
reason was per request from our client. They stated that it would be best for the project if
we didn’t research into the metrics and notions behind the data given. Their reasoning
was that they wanted a fresh set of eyes that didn’t have bias toward any piece of the data.
The second reason was that we needed to tune our focus to other places. We didn’t have
any substantial experience or knowledge on the subject of data analytics and machine
learning. We only had a limited amount of time for research, and delving further into
machine learning instead of the financial domain was going to have a bigger impact on
the success of our project.

5 Appendices

APPENDIX I. OPERATIONS MANUAL

In order to take advantage of the system we have developed, a user would have to develop
concrete implementations of each of the Pipeline Components explained in section 2.1.
This would all be done in one main python file, which would also contain the necessary
imports for the data loading process, initializing the components, and displaying or
storing outputs. Those components must then be passed into a Pipeline object for use,
then call the ​run()​ method on that pipeline. The results come back in the form of a Result
class, which is used to access several graphing functions, accuracy results, or the raw
predicted and actual values.

The list of steps to setup and demo our system are as follows:

1. Download and install the most recent release of the Anaconda distribution
2. Clone the repository that contains the code for the system
3. Implement concrete classes that extend each pipeline component superclass.
4. Create a main.py file to instantiate the components and call the .run() method on

the Pipeline object
5. Open a shell window
6. Navigate to the directory which contains the source code .py files from the

repository
7. Run the command “python main.py”

APPENDIX II. ALTERNATIVE/UNUSED VERSIONS OF DESIGN

Alternative versions of our product were developed prior to our client adjusting the scope
and specifications of our end goal. The development in the first semester of working on
this project involved a focus on using machine learning and feature selection to predict
specific factors of the data set. Developing accurate scores for predictions of these factors
was where our team oriented most of the code. We also developed an extensive data
library for ease of access to correctly aggregated and formatted data with various machine
learning models.

A version of the final product that was considered before the end goals were established
was development of a web application. This would mostly be a dashboard for our client to
be able to directly interface with our models. It would provide appropriate graphs, much
like our current end product. This was not able to be fully fleshed out because of the time
constraints for finishing our development of the machine learning models.

APPENDIX III. MISCELLANEOUS/OTHER CONSIDERATIONS

